skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Manthi, Fredrick Kyalo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The highest species richness and ecological diversity of extant snakes are in the tropics, primarily in South Asia and Central and South America. Tropical Africa has relatively lower richness and less diversity, but the evolution of tropical herpetofaunas, and the factors governing diversification through time at continental scales are poorly understood due to an understudied fossil record. The ecologies and geographic distributions of aniliid and uropeltoid snakes are examples. Modern species constitute either a grade or clade of fossorial, primarily wet forest taxa from South America and South Asia. Their distributions have historically been interpreted as Gondwanan vicariance following the isolation of Africa in the Early Cretaceous, but a definitive fossil record for these snakes is depauperate. Field research in the early Miocene (approx. 19 Mya) Tinderet sequence of western Kenya has produced precloacal vertebrae of an aniliid snake from multiple localities. Specimens possess vertebral apomorphies shared with extant South American Anilius scytale, including the morphology of the neural spine and prezygapophyseal angle. Combined with additional fossils from the Eocene of North Africa and Middle Miocene of Kenya, the Tinderet records demonstrate an unambiguous past record of an extant neotropical snake lineage in Africa and falsify previous vicariance hypotheses. Recent stable isotopic and palynological studies of Neogene eastern African fossil localities have indicated heterogenous environments, including C4 grasses and wood- to scrubland, associated with vertebrate faunas. Comparing climate parameters of habitats for extant Anilius and uropeltoid snakes as ecological analogues to the Tinderet snake with modern ecosystems equivalent to those reconstructed for the eastern African early Miocene demonstrates only limited overlap in precipitation and temperature values. This discord indicates either greater environmental heterogeneity than reconstructed for the early Miocene of eastern Africa, or a greater range of habitat variability in aniliid snakes than observed in extant Anilius. 
    more » « less
  2. Tectonically driven physiographic evolution in early Miocene of eastern Africa significantly shaped landscapes, climates, and vegetation, resulting in habitat heterogeneity. Early hominoids inhabited these landscapes, and their evolutionary history was likely influenced by these heterogenous environments. In western Kenya, around the extinct Tinderet Volcano (ca. 19-21Ma), fossil-rich exposures offer crucial insights into this history with evidence of early hominoids. Here we use analyses of sedimentology, paleosol paleoclimate proxies, fossil leaves, and forestry metrics, to reconstruct the paleoclimate and paleoecological reconstruction of the Koru-16 fossil site. Sedimentological and stratigraphic analyses at Koru-16 reveal a landscape marked disturbance created by periodic volcanic eruptions and stable intervals marked by moderately to poorly developed paleosols. Paleoclimate reconstructions based on paleosol geochemistry indicates warm and wet conditions. Over 1000 fossil leaves were collected from the Koru-16 site, representing 17 morphotypes across two stratigraphic intervals. Mean annual precipitation estimates based on leaf size of shape indicate >2000mm/yr. Leaf lifespan reconstructions reveal predominantly evergreen taxa with a distribution leaf lifespan, similar to modern equatorial African rainforests. Fossil tree stump casts suggest an open forest, similar to contemporary tropical forests supporting large-bodied primates. Importantly, fossil leaves, the tree stump casts, a medium-sized pythonid, and multiple specimens of large-bodied primates occur in the same stratigraphic layer demonstrating their cooccurrence in the Koru-16 ecosystem. The multi-proxy paleoclimate and paleoecological reconstructions for Koru-16 converge on a very wet and warm climate supporting a closed, tropical seasonal forest to rainforest biome. This environment likely provided an ideal habitat for early hominoids, emphasizing the role of forested habitats in their early Miocene evolution. Additional work is ongoing on refining the paleosol paleoclimate estimates with a more recent model and δ13C analysis of soil organic matter will help to further refine these reconstructions. 
    more » « less
  3. The first fossil apes published from Africa were discovered in the 1920s at the Tinderet site of Koru, Kenya. Since that time, the entire Tinderet fossil complex has produced thousands of fossil mammals, reptiles, and plants, including some of the most important early ape and stem catarrhine specimens. Here, we report results from geological, paleoecological, and paleontological surveys and samples conducted by our team between 2013-2023. A major part of our work has been to rediscover old but sometimes poorly documented fossil sites and to assess their potential for future research. One such site, Tonde Bridge, was thought to have no remaining fossil deposits but we report here the discovery of many new specimens. We have also discovered new fossil sites that may sample poorly known depositional and/or ecological settings. Our stratigraphic and geochronological results help to better ordinate major fossil outcrops with respect to each other. We have also specifically targeted the smallest microfauna as well as understudied taxonomic groups such as reptiles and amphibians. This work combined with other paleoecological analyses confirm closed habitats at many of the Tinderet sites. One site in particular has benefitted from extensive multi-proxy paleoecological reconstruction, allowing us to place some fossil apes within a dense forested environment. Finally, the discovery of important new primate specimens helps clarify some of the anatomical variation represented in historic collections but also extends the taxonomic variation from Tinderet. In particular, the discovery of a large-bodied nyanzapithecine from Koru suggests that size variation in this clade may have been similar to that found in proconsulids. 
    more » « less
  4. Eastern African terrestrial ecosystems in the Early Miocene are characterized by habitat heterogeneity resulting from local rifting, climate variation, and biogeography. These dynamic landscapes profoundly influenced the evolutionary trajectories of hominoids and other mammals. In western Kenya, a collection of Early Miocene fossil-rich sites (ca. 20 Ma) proximate to the extinct Tinderet Volcano, offers a unique window into understanding habitat preferences and ecological drivers to the evolution of hominoids. Here, we present data from one of the sites, Koru 16, with evidence of remarkably preserved fossil fauna, fossil leaves, tree stump casts, and paleosols, to provide invaluable insights into the ancient ecological dynamics of the region. We use multiple proxies to reconstruct the paleoclimate and paleoecology of the Koru 16 site. The lithofacies of the Koru 16 area are characterized as interbedded ash and weakly developed paleosols indicating episodic landscape disturbance from eruptions of the volcano followed by intervals of stability. Paleosol features together with paleoclimate estimates using two models based on elemental weathering (RF-MAP and PPM) indicate warm and wet conditions. More than 1000 fossil leaves collected from two stratigraphic locations at Koru 16 yielded seventeen morphotypes which were identified across both localities and displaying different distributions of morphotypes between them. The average leaf size of morphotypes form both localities is mesophyll to megaphyll and mean annual precipitation estimates using multiple leaf physiognomic methods indicate >2000 mm/yr. Leaf lifespan estimates derived from the leaf mass per area (MA) proxy suggest that the site was predominantly characterized by evergreen taxa, with limited deciduous taxa. The distribution of MA is consistent with tropical rainforests and tropical seasonal forests in equatorial Africa, indicating similarities in leaf characteristics and ecological patterns. Tree stump casts corroborate this observation, as they indicate an open forest, with density similar to modern tropical forests that support large-bodied primates. The fauna includes a medium- sized pythonid, and at least two species of apes, along with other mammalian taxa typical for the early Miocene. Our comprehensive paleoclimate and paleoecological analyses suggest that the Koru 16 site was very warm and wet, which is a climate conducive for a tropical seasonal forest transitioning into a rainforest biome. This environmental reconstruction underscores the broad distribution of Early Miocene apes in a variety of habitats, and calls into question a recent hypothesis that apes only lived in environments with a significant open component. 
    more » « less
  5. The highest species richness and ecological diversity of extant squamates are in the tropics. Both their taxic richness and functional traits are predictably correlated to environmental factors, and the utility of these measures in the squamate fossil record is an emergent tool for paleoenvironmental reconstruction. Ongoing field research in the early Miocene (approx. 20–19 Mya) Tinderet sequence of western Kenya has produced a diverse record of squamates which provides environmental data for hominoid-bearing localities. The record consists of chamaeleonid, agamid, varanid, and amphisbaenid lizards as well as snake lineages including pythonids, colubroids, elapoids, and a newly discovered taxon sharing unique vertebral apomorphies with extant tropical South American Anilius scytale. Combined with additional fossils from the Eocene of North Africa, the new Tinderet taxon demonstrates an unambiguous past record of an extant neotropical snake lineage in Africa and falsifies previous vicariance hypotheses to explain the biogeographic histories of basal divisions within snakes. Recent stable isotopic and phytolith studies of Early to Middle Miocene eastern African fossil localities have indicated heterogenous environments, including C4 grasses and wood- to scrubland, associated with vertebrate faunas. The composition of squamate faunas is generally consistent with these reconstructions, with the new taxon providing precise evidence for precipitation. Comparing climate parameters of habitats for Anilius and other extant ecological analogues equivalent to those reconstructed for the eastern African Early Miocene indicates annual precipitation between 1500–2500 mm/year, consistent with wet tropical seasonal forests and rain forests. 
    more » « less
  6. Comparative morphometric study of recently recovered fossil elephant molars from Natodomeri, Kenya identifies them as belonging to Elephas jolensis and confirms the presence of this species in Members I and II of the Kibish Formation. Improved datation of these geological units constrains them between 205 and 130 ka. Elephas jolensis is also reported from localities in northern, northwestern, eastern, and southern Africa. Thus, including its Natodomeri occurrence, E. jolensis appears to have been pan- African in distribution. Despite the wide geographic distribution of the species, molars of E. jolensis are remarkably uniform morphometrically. They are characterized by their extreme hypsodonty, high amplitude of enamel folding, high lamellar frequency, and plates that are anteroposteriorly thick relative to transverse valley interval spacing. In addition, they exhibit only a modest number of plates (<20 in M3/m3). Elephas jolensis either evolved from or represents the last stage of Elephas recki, the dominant elephant species in East Africa during the late Pliocene-Pleistocene. The dental morphology and isotopic composition of E. jolensis indicates that, like E. recki, it was a dedicated grazer. In the Kibish Formation, E. jolensis is succeeded by Loxodonta africana at 130 ka, coincident with an intensely cool, dry interval marked by episodes of extreme drought. This marked the extirpation of Elephas on the continent. The intensity and increased rate of climate fluctuation may have played an important role in the demise of the specialist, grazing E. recki-E. jolensis lineage in favor of a generalist, mixed feeder such as L. africana. Keywords Natodomeri, Kenya . Kibish Formation . Elephantidae . Elephas jolensis . Late middle Pleistocene 
    more » « less
  7. Abstract Multiple lines of genetic and archaeological evidence suggest that there were major demographic changes in the terminal Late Pleistocene epoch and early Holocene epoch of sub-Saharan Africa 1–4 . Inferences about this period are challenging to make because demographic shifts in the past 5,000 years have obscured the structures of more ancient populations 3,5 . Here we present genome-wide ancient DNA data for six individuals from eastern and south-central Africa spanning the past approximately 18,000 years (doubling the time depth of sub-Saharan African ancient DNA), increase the data quality for 15 previously published ancient individuals and analyse these alongside data from 13 other published ancient individuals. The ancestry of the individuals in our study area can be modelled as a geographically structured mixture of three highly divergent source populations, probably reflecting Pleistocene interactions around 80–20 thousand years ago, including deeply diverged eastern and southern African lineages, plus a previously unappreciated ubiquitous distribution of ancestry that occurs in highest proportion today in central African rainforest hunter-gatherers. Once established, this structure remained highly stable, with limited long-range gene flow. These results provide a new line of genetic evidence in support of hypotheses that have emerged from archaeological analyses but remain contested, suggesting increasing regionalization at the end of the Pleistocene epoch. 
    more » « less
  8. Abstract In 1967 G.G. Simpson described three partial mandibles from early Miocene deposits in Kenya that he interpreted as belonging to a new strepsirrhine primate,Propotto. This interpretation was quickly challenged, with the assertion thatPropottowas not a primate, but rather a pteropodid fruit bat. The latter interpretation has not been questioned for almost half a century. Here we re-evaluate the affinities ofPropotto, drawing upon diverse lines of evidence to establish that this strange mammal is a strepsirrhine primate as originally suggested by Simpson. Moreover, our phylogenetic analyses support the recognition ofPropotto, together with late EocenePlesiopithecusfrom Egypt, as African stem chiromyiform lemurs that are exclusively related to the extant aye-aye (Daubentonia) from Madagascar. Our results challenge the long-held view that all lemurs are descended from a single ancient colonization of Madagascar, and present an intriguing alternative scenario in which two lemur lineages dispersed from Africa to Madagascar independently, possibly during the later Cenozoic. 
    more » « less